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We have numerically calculated the autocorrelation function C�r� of the spin misalignment by means of
micromagnetic theory. C�r� depends sensitively on the details of the underlying magnetic microstructure and
can be determined by Fourier inversion of magnetic small-angle neutron scattering data. The model system
which we consider consists of a single isolated spherical nanoparticle that is embedded in an infinitely ex-
tended matrix. The particle is uniquely characterized by its magnetic anisotropy field Hp�x�, whereas the
matrix is assumed to be otherwise anisotropy-field free. In the approach-to-saturation regime, we have com-
puted the static response of the magnetization to different spatial profiles of Hp�x�. Specifically, we have
investigated the cases of a uniform particle anisotropy, uniform core shell, linear increase, and exponential and
power-law decay. From the magnetization profiles and the associated C�r�, we have extracted the correlation
length lC of the spin misalignment, and we have compared the applied-field dependence of this quantity with
semiquantitative theoretical predictions. We find that for practically all of the considered models for the
anisotropy field �except the core-shell model� the field dependence of the spin-misalignment fluctuations is
quite uniquely reproduced by lC�Hi�=L+ lH�Hi�, where the field-independent quantity L is on the order of the
particle size and lH�Hi� represents the so-called exchange length of the applied magnetic field.
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I. INTRODUCTION

Small-angle neutron scattering �SANS� is a particularly
powerful technique for the investigation of structural inho-
mogeneities in bulk materials on a length scale between a
few nanometers and a few hundred of nanometers. The in-
creasing demand and importance of this method is mainly
due to the fact that a wide range of problems in diverse
scientific disciplines such as biology, chemistry, physics, and
materials science can be tackled. To name only a few, SANS
is used to study the vortex lattice in superconductors,1 pre-
cipitates in steels,2 the magnetic microstructures of nanocrys-
talline bulk ferromagnets,3,4 nanoparticles,5,6 spin glasses,7

spin-helix chirality and skyrmions in single crystals,8,9 the
magnetization dynamics of ferrofluids,10 micelle formation
in aqueous solution,11 the fractal structure of volcanic
rocks,12 polymers,13 or the structure of biological
macromolecules.14,15 For recent reviews in this field, we re-
fer to Refs. 16–21.

The analysis of nuclear and magnetic SANS data usually
relies on the so-called particle-matrix concept, which consid-
ers small-angle scattering due to a dispersion of particles that
are embedded in a matrix of a different phase.22–24 The
SANS signal arises from the difference in the nuclear and
magnetic scattering-length densities of particles and matrix.
An important quantity is the form factor F�q� of the particle,
where q denotes the momentum-transfer or scattering vector.
F�q� contains information on the size and shape of the par-
ticle and is known for practically all geometrical shapes.
Likewise, several models for the structure factor S�q�, which
takes into account interparticle interferences/interactions,
have been developed �e.g., Ref. 25�. Therefore, it may be
concluded that within the above particle-matrix picture the
theoretical SANS concepts are relatively well developed.

An important class of magnetic materials where this ap-
proach fails are nanocrystalline bulk ferromagnets, which
can be considered as three-dimensional �3D� dense materials
�volume fraction of “particles” �100%� with an average
crystallite size in the 10 nm regime. As is well known, mag-
netic SANS has its origin in the Fourier image m�q� of the
magnetization vector field M�x�, where x is the position
vector.26 For bulk magnets, the function m�q� depends in a
complicated way on the magnetic interactions, the most im-
portant of which are the �isotropic� exchange interaction, the
magnetocrystalline and magnetoelastic anisotropy, the mag-
netostatic self-interaction, and the Zeeman energy.27 The
ground state of a magnetic material is governed by the com-
petition of these magnetic forces. Besides isotropic ex-
change, the relatively weak antisymmetric Dzyaloshinskii-
Moriya interaction28,29 gives rise to an additional
contribution which prefers nonuniform spin configurations.
Due to the broken lattice symmetry at interface regions, the
Dzyaloshinskii-Moriya interaction is believed to be particu-
larly relevant in nanomagnetic materials, which are charac-
terized by a large interface-to-volume ratio. This conjecture
has recently been supported by experiment.30,31

The perturbation in the spin microstructure �spin mis-
alignment� that is caused by a particular type of lattice defect
is transmitted by means of the exchange interaction into the
surrounding lattice on a characteristic length scale �spin-
misalignment length lC� which falls well into the resolution
range of the SANS technique. To a first approximation, lC
depends on the exchange and magnetostatic interaction, on
the applied magnetic field, and on the spatial structure of the
perturbing magnetic anisotropy field. Clearly, such inhomo-
geneous magnetization states are not accounted for in the
commonly utilized particle-matrix description of magnetic
SANS, where mostly magnetically uniform particles are as-
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sumed and the structure is treated as a geometrical problem
only.

Going beyond particle-matrix concepts, the continuum
theory of micromagnetics32–36 sets the framework for analyz-
ing magnetic microstructures and can be employed for cal-
culating the spin-misalignment SANS cross section d�M /d�
due to a given magnetization profile m�q�. In a sense, m�q�
may be seen as replacing the particle form factor F�q�. The
approach of combining SANS and micromagnetics was
mainly initiated by Seeger and Kronmüller, who have inves-
tigated the influence of spin-misalignment fluctuations due to
dislocations on the SANS signal of cold-worked Ni and Fe
single crystals.37–44 We have recently summarized the de-
scription of magnetic-field-dependent SANS on nanomag-
nets in terms of micromagnetic theory.21

However, a large fraction of the previous analysis works
in reciprocal space and provides closed-form expressions for
d�M /d�, from which parameters such as the exchange-
stiffness constant or the mean stray and anisotropy field can
be obtained. Since real-space information is missing, the
present paper is concerned with the analysis of spin-
misalignment fluctuations in the space domain. In particular,
we calculate numerically the correlation function C�r� of the
spin misalignment for a simple model system which consists
of a single isolated nanoparticle that acts as a perturbation for
the magnetization of the surrounding matrix. By employing
arguments of random anisotropy, we will see that this ap-
proach may also describe the behavior of an ensemble of
particles. The field dependence of lC, i.e., of the characteris-
tic range of gradients in the spin structure is obtained for
different spatial profiles of the particle’s anisotropy field.

The paper is organized as follows. In Sec. II, we briefly
sketch the micromagnetic background. Section III provides
an introduction into the correlation-function formalism, in
particular, we relate the high-field solution for the Fourier
coefficient of the magnetization from Sec. II to the correla-
tion function C�r�. In Sec. IV, we discuss definitions for ex-
tracting the correlation length lC of the spin misalignment
from C�r� data. In Sec. V, we introduce the models for the
spatial structure of the magnetic anisotropy field of a single
particle, which is embedded in an infinite anisotropy-field-
free matrix. In Sec. VI, we present and discuss the results for
the magnetization profiles, correlation functions, and for the
correlation lengths. The effect of the magnetostatic field,
which is neglected in our calculations, is estimated. Section
VII summarizes the main results of this study and provides
an outlook of future challenges in this direction.

II. MICROMAGNETIC BACKGROUND

In order to achieve a self-contained presentation, we will
in this section briefly outline the micromagnetic background
which is necessary for the computation of the correlation
function of the spin misalignment. A comprehensive discus-
sion of the relation between micromagnetic theory and mag-
netic neutron scattering can be found in Ref. 21. The static
magnetic microstructure, which gives rise to elastic magnetic
SANS, obeys the following balance-of-torque equation:32–36

� 2A

�0Ms
2�2M�x� + H�x� + Hp�x�� � M�x� = 0. �1�

A is the exchange-stiffness constant, �0=4�10−7 T m /A,
Ms= �M�x�� is the saturation magnetization, M�x� is the mag-
netization vector field with Cartesian components
Mx�x� ,My�x� ,Mz�x�, �2M�x�= ��2Mx ,�2My ,�2Mz�, H�x� is
the magnetic field, which is composed of the applied mag-
netic field Hi and of the magnetostatic self-interaction field
Hd�x�, and Hp�x� is the magnetic anisotropy field. Note that
in the present calculations we assume uniform values for A
and Ms. The competition of the various fields in Eq. �1�
determines the magnetic microstructure, and at static equilib-
rium the torque on M�x� vanishes.

Equation �1� together with boundary conditions represents
a system of nonlinear partial differential equations. There-
fore, solutions of Eq. �1� and of its dynamic extension, the
Landau-Lifshitz-Gilbert equation, are generally only possible
by means of numerical micromagnetic computations �e.g.,
Refs. 45–51�. An approximate analytical solution of Eq. �1�
is possible at large applied fields, when the variation in the
magnetization is confined to the plane perpendicular to Hi.
Within this so-called small-misalignment approximation, Eq.
�1� can be linearized by ignoring terms which are of higher
than linear order in the transversal spin components.

In the following, we focus on the solution of Eq. �1�
which is relevant for the SANS geometry where the wave
vector k0 of the incident neutron beam is normal to Hi �ez.
For k0 �ex, the scattering vector �wave vector� q in the small-
angle regime varies exclusively in ey-ez plane, i.e., we can
write q�q�0,sin � , cos ��, where � denotes the angle be-
tween q and Hi. Neglecting surface effects, the small-
misalignment solution �in the bulk� for the Fourier coeffi-
cient m�q�= �mx ,my ,0� of the reduced transversal
magnetization can be expressed as21,52

mx�q� =
hx�q�

Heff�q,Hi�
,

my�q� =
hy�q�

Heff�q,Hi� + Ms sin2 �
, �2�

where hx�q� and hy�q� represent the Cartesian components of
the Fourier transform of the anisotropy field Hp�x�,

h�q� =
1

�2��3/2� Hp�x�exp�− iq · x�d3x . �3�

In the high-field limit, Hp�x� is assumed to be independent of
the magnetization but to depend explicitly on the position x
in the material. The effective magnetic field

Heff�q,Hi� = Hi�1 + lH
2 q2� �4�

depends on Hi, on q= �q�, and on the exchange length of the
field
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lH�Hi� =	 2A

�0MsHi
. �5�

The quantity lH specifies the length scale over which pertur-
bations in M�x� decay. In particular, lH represents the corre-
lation length of the spin misalignment when perturbations in
the spin microstructure have Delta-function character �see
below�. The term Ms sin2 � in Eq. �2� is a consequence of the
magnetostatic field Hd due to nonzero volume divergences of
M. In our calculations we have neglected this term, which is
justified when Heff�Ms �compare Sec. VI A below�. Equa-
tion �2� then reduces to the simpler expression

m�q� �
h�q�

Heff�q,Hi�
. �6�

The function m�q� is defined as

m�q� =
1

�2��3/2� Mp�x�
Ms

exp�− iq · x�d3x , �7�

where Mp�x�=M�x�− 
M� denotes the fluctuation of the
magnetization with 
M� the mean magnetization, which is
parallel to Hi. The reduced transversal magnetization
Mp�x� /Ms is obtained from Eq. �7� using Eq. �6� as

Mp�x�
Ms

=
1

�2��3/2� h�q�
Heff�q,Hi�

exp�iq · x�d3q . �8�

III. CORRELATION FUNCTION OF THE SPIN
MISALIGNMENT

The autocorrelation function C�r� of the spin misalign-
ment is defined by close analogy to the well-known Patterson
function in x-ray scattering53 as54,55

C�r� =
1

V
� Mp�x�Mp�x + r�

Ms
2 d3x , �9�

where V is the sample volume. Note that C�r� is a dimen-
sionless quantity. Alternatively, C�r� may be expressed as

C�r� =
1

V
� �m�q��2exp�iq · r�d3q . �10�

From Eq. �9� it follows, the well-known result, that the value
of the correlation function at the origin is equal to the �re-
duced� mean-square magnetization fluctuation,

C�r = 0� =
1

V
� �Mp�x��2

Ms
2 d3x =


�Mp�2�
Ms

2 . �11�

As was shown, for instance, in Ref. 55, the quantity C�0� can
be related to the macroscopic mean magnetization �
M��,
which is measured with a magnetometer, according to

�
M�� = Ms
	1 − C�0� . �12�

In the following, we will consider statistically isotropic
anisotropy-field microstructures, i.e., h�q� is assumed to de-
pend only on the magnitude of the wave vector, h=h�q� �see

discussion in Sec. V�. In conjunction with Eq. �6�, this im-
plies m=m�q� and, hence,

C�r,Hi� =
4�

Vr
�

0

	 h2�q�
Heff

2 �q,Hi�
sin�qr�qdq . �13�

Likewise, the correlation function can also be obtained from
experimental data for the spin-misalignment scattering cross
section d�M /d�
m2�q�, according to54–56

C�r,Hi� =
K

r
�

qmin

qmax d�M

d�
�q,Hi�sin�qr�qdq , �14�

where K is a constant and qmin and qmax represent, respec-
tively, the lower and upper limits of the experimentally ac-
cessible range of momentum transfers. In a SANS experi-
ment, typically, qmin�0.01 nm−1 and qmax�5 nm−1 so that
meaningful information on C�r� and, hence, on the spin mi-
crostructure can be obtained for distances r within a few
nanometers and a few hundred of nanometers, roughly 1–300
nm.

IV. HOW TO EXTRACT THE CORRELATION LENGTH
OF THE SPIN MISALIGNMENT?

An important quantity which can be extracted from C�r�
is the correlation length lC of the spin misalignment, which is
a measure for the characteristic distance over which pertur-
bations in M�x� decay. Inspection of Eqs. �3� and �6�–�8�
reveals that near saturation the magnetic microstructure in
real space, Mp�x� /Ms, corresponds to the convolution of the
anisotropy-field microstructure Hp�x� with an exponential
which decays with the characteristic length lH. Therefore,
from this point of view, it seems quite reasonable to assume
that in the approach-to-saturation regime lC depends on lH
and on a characteristic �field-independent� length scale L,
which is related to the magnetic anisotropy field, i.e., to the
size of the defect �see discussion below�. For comparison, in
nuclear SANS, the correlation function of a single uniform
sphere with radius R reads57 C�r�=1−3r / �4R�+r3 / �16R3�
for r�2R and C=0 for r�2R. Applying, for instance, the
definition Eq. �16� �see below� yields a correlation length of
lC= 4

3R.
However, in contrast to nuclear SANS studies on polydis-

perse particle assemblies, where microstructural parameters
such as, for instance, the radius of gyration or the correlation
length may be obtained from certain ratios of moments of the
measured scattering intensity �e.g., Ref. 58�, it is not imme-
diately obvious how to extract lC from magnetic SANS data.
This difficulty arises mainly because lC is a field-dependent
quantity which characterizes the magnetic microstructure
and, therefore, by virtue of the above-mentioned convolution
property, lC is closely related �via Hp� to the nuclear grain
microstructure.

In Refs. 54 and 55, we have suggested the following two
definitions for extracting lC from C�r� curves, which can be
obtained from magnetic-field-dependent SANS data. First,
we have identified lC with the r value for which the extrapo-
lated value of C�r� to the origin, C�0�, has decayed to
C�0�exp�−1�, i.e.,
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lC = r for which C�r� = C�0�exp�− 1� . �15�

Second, we have determined lC by means of the logarithmic
derivative of C�r� in the limit r→0, i.e.,

lC = − lim
r→0

�d ln C

dr

−1

. �16�

Both definitions for lC, Eqs. �15� and �16�, do not require that
C�r� is an exponential, but they yield the exact correlation
length when the correlations decay exponentially. We would
also like to note that within the present micromagnetic ap-
proach exponentially decaying correlation functions are
rather the exception than the rule. For the here considered
models for Hp�x� �except the Delta-function perturbation�,
the numerical calculations reveal that in the limit r→0 the
slope of C�r� vanishes �compare, e.g., Figs. 2�b�, 5, 7, and 10
below�. This result is consistent with the lack of a sharp
boundary in the magnetic microstructure �infinitely extended
magnetization profiles� and with the absence of an
asymptotic q−4 Porod behavior �see Sec. V F�.57 Therefore,
the definition Eq. �16� is not used in the following. We would
also like to note that an alternative route to extracting a spin-
misalignment length may be realized by the computation of
moments of the correlation function.59

V. MODELS FOR THE ANISOTROPY-FIELD
MICROSTRUCTURE

In this section, we will introduce some simple models for
the anisotropy field Hp�x� which will be used for the later
calculation of the reduced transversal magnetization and of
the correlation function of the spin misalignment. In particu-
lar, we consider a single isolated particle with a given aniso-
tropy field which is embedded in an infinitely extended
anisotropy-field-free matrix. For simplicity, we assume the
particle to be a sphere of radius R1. Additionally, we consider
a core-shell particle with inner radius R1 and outer radius R2.
Figure 1 displays the different models for the anisotropy
field.

We would like to particularly note that the above assump-
tion of a single isolated particle is not as “severe” as the
comparable assumption in nuclear SANS, where the applica-
tion of single-particle form factors is restricted to dilute sys-
tems and implies the neglect of interparticle interference.
Here, we consider magnetic microstructures that contain
many lattice imperfections, for instance, many crystallites
separated by grain boundaries, which are arranged so that the
orientation and/or magnitude of their individual anisotropy
fields are statistically uncorrelated �random anisotropy�.
When the orientations of the hi are uncorrelated, then terms
hi ·h j with i� j will appear with either sign with equal prob-
ability, and the expectation value for their sum vanishes.
Consequently, the expectation value for the magnitude
square of the total anisotropy-field Fourier coefficient
�h�q��2= ��ihi�q��2 decomposes into the sum of the magni-
tude squares of the anisotropy fields of the individual de-
fects, i.e., �h�q��2=�i�hi�q��2. Within the validity of the linear
approximation, i.e., m�q ,Hi�=h�q� /Heff�q ,Hi�, the above
property of �h�q��2 also transfers to �m�q��2 and, hence, to the

ensuing spin-misalignment scattering cross section d�M /d�.
In other words, in order to obtain results which are represen-
tative for the entire microstructure, it is �within the assump-
tion of random anisotropy� sufficient to solve the single-
grain problem.52

A. Uniform sphere

One of the simplest models for Hp�x� is a uniform sphere,
where the anisotropy field of the sphere, Hp1, is assumed to
be a constant vector that points into an arbitrary direction in
space. Note that the magnitude Hp1 of the anisotropy field is
on the order of K1 /Ms, where K1 denotes an anisotropy con-
stant. The relation between the Fourier coefficients h�q� and
Hp�x�, Eq. �3�, then allows one to compute h�q�. The result
for h2�q� is

h2�q,R1� =
Hp1

2

�2��3F2�q,R1� , �17�

where F�q ,R1� is defined as

F�q,R1� = 3V1
�sin�qR1� − qR1 cos�qR1��

�qR1�3 �18�

and V1= 4
3�R1

3 denotes the volume of the sphere.

B. Uniform core shell

A straightforward extension of the uniform-sphere model
is the uniform core-shell model, where the anisotropy fields
of the core, Hp1, and of the shell, Hp2, are both constant
vectors but with different magnitudes. For h2�q�, we obtain

FIG. 1. �Color online� Models for the spatial structure of the
magnetic anisotropy field Hp��x�=r� of a spherical particle �core
shell�, which is embedded in an anisotropy-field-free matrix. For
illustration purposes, we have chosen R1=10 nm, R2=13 nm,
�0Hp1=0.1 T, and �0Hp2=0.2 T �0.02 T�.
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h2�q,R1,R2� =
Hp1

2

�2��3F2�q,R1� +
Hp2

2

�2��3 �F�q,R2� − F�q,R1��2

+
2Hp1Hp2 cos 


�2��3 F�q,R1��F�q,R2� − F�q,R1�� ,

�19�

where 
 denotes the angle between Hp1 and Hp2 and V2

= 4
3�R2

3. The above expression for h2�q�, Eq. �19�, may be
able to model the effect of an interface anisotropy. Depend-
ing on the relative magnitudes of Hp1 and Hp2, one may
distinguish between magnetically “hard” �Hp1 /Hp2�1� and
“soft” �Hp1 /Hp2�1� interfaces.

C. Exponential decay

For an exponentially decaying anisotropy field with a
characteristic length scale R1, i.e., Hp��x�=r�=Hp1 exp
�−r /R1� with Hp1=constant, we obtain for the magnitude
square of the anisotropy-field Fourier coefficient

h2�q,R1� =
2Hp1

2 R1
4

�e2q2�1 + q2R1
2�4 � �qR1 cos�qR1��3 + q2R1

2�

+ 2 sin�qR1� − 2eqR1�2. �20�

D. Power-law decay

When the anisotropy field decays according to a power
law, Hp�r�=Hp1�R1 /r�n with Hp1=constant, we obtain �for
n=1�

h2�q,R1� =
2Hp1

2 R1
2�1 − cos�qR1��2

�q4 . �21�

Note that the above expression for Hp diverges as r→0 and
that Hp takes on the value of Hp1 at the interface �r=R1�. In
our computations, we have also used Hp�r�=Hp1�R1 / �R1
+r��n with n�1, which is finite at r=0. The results for the
corresponding magnetization profiles and correlation func-
tions are qualitatively similar to the above case of Eq. �21�,
and the values for the correlation length of the spin misalign-
ment are nearly identical.

E. Linear increase

When Hp increases linearly from r=0 to r=R1, i.e.,
Hp�r�=Hp1�r /R1� with Hp1=constant, we obtain

h2�q,R1� =
2Hp1

2

�R1
2q8 �2qR1 sin�qR1� + �2 − q2R1

2�cos�qR1� − 2�2.

�22�

F. Delta-function perturbation

Finally, we note that for a Delta-function-type perturba-
tion, Hp�x�
��x�, the anisotropy-field Fourier coefficient is
a constant, and we obtain the familiar result that the spin-
misalignment fluctuations decay exponentially, i.e., C�r�

exp�−r / lC�. The resulting scattering is described by a

Lorentzian-squared function with the correlation length
lC�Hi�= lH�Hi�. This result is perfectly reproduced by our al-
gorithm. By contrast, all the other models for Hp�x� yield
asymptotically h2�q�
q−4. In conjunction with the q−4 de-
pendence of Heff

−2, this results in spin-misalignment scattering
cross sections d�M /d� which may be as steep as q−8 �Ref.
21�.

VI. RESULTS AND DISCUSSION

For the computation of the magnetization and correlation
functions, we have used the materials parameters of Ni �Ref.
21�: A=8.2�10−12 J /m and Ms=500 kA /m ��0Ms
=0.628 T�. The radius of the sphere was taken as R1
=10 nm, and for the core shell we have assumed R1
=10 nm and R2=13 nm. Moreover, unless stated otherwise,
the magnitudes of the anisotropy fields of the sphere and of
the magnetically hard shell were, respectively, chosen as
�0Hp1=0.1 T and �0Hp2=1.0 T. The integrals for Mp /Ms
and for C�r�, Eqs. �8� and �13�, have both been solved nu-
merically using Gauss-Legendre integration.

A. Influence of the magnetostatic field

As mentioned in Sec. II, we have neglected in our com-
putations the effect of the magnetostatic field, i.e., we have
solved the simpler Eq. �6� rather than Eq. �2�, which calls for
a twofold numerical integration. This simplification is based
on the general notion that demagnetizing effects are expected
to be negligible in the approach-to-saturation regime. In or-
der to check whether this assumption is justified or not, we
have calculated

Mp

Ms
�r� and C�r� taking into account Hd and

compared the results with the situation when the term
Ms sin2 � in Eq. �2� is neglected. For this computation, we
have assumed that the anisotropy field of the particle in-
creases linearly from the origin to the interface, Hp�r�
=Hp1�r /R1�; in order to assure that �Hp1�=Hp1, we have
taken Hp1=Hp1�1 /	2,1 /	2,0�. The results of such an analy-
sis are shown in Fig. 2.

Several observations may be noted. First, since the inclu-
sion of the magnetostatic field suppresses m�q� �compare Eq.
�2��, both Mp /Ms and C at a given field are larger without Hd
�solid lines in Figs. 2�a� and 2�b�� than with Hd �dashed
lines�. Second, the difference between the two cases becomes
progressively smaller as the applied field is increasing, thus,
corroborating that demagnetizing-field effects are indeed
negligible at the larger fields, here, for �0Hi�1 T. Third,
the shapes of the

Mp

Ms
�r� and C�r� curves are very similar and

the resulting values for the correlation length lC of the spin
misalignment are almost identical �Fig. 2�c��. Therefore, we
have neglected in our study the term due to Hd.

In the following, we will present a more thorough discus-
sion of the magnetization profiles and correlation functions.

B. Magnetization profiles and correlation functions

Figure 3 displays the results for the applied-field depen-
dence of the magnitude of the reduced transversal magneti-
zation Mp /Ms. As expected, an increasing applied field sup-
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presses spin fluctuations. The Mp /Ms curves reveal that the
perturbation which is caused by the anisotropy-field distribu-
tion of the particle is largest at the center of the dominating
defect, and then Mp /Ms decays smoothly at the larger dis-
tances. While the data for the uniform-sphere model �Fig.
3�a�� and the exponential decay case �Fig. 3�c�� are qualita-
tively similar, the shapes of the other two Mp /Ms curves are
significantly different: the core-shell particle �Fig. 3�b�� ex-
hibits a peak in Mp /Ms due to the hard shell �see below�, and
for the power-law decay case �Fig. 3�d��, we find an almost
linear decrease in Mp /Ms at small r and not too large fields.

The results in Fig. 3 also demonstrate the special role of
the exchange length lH, which can be taken as the spatial
resolution limit of the magnetization.60 In the small-
misalignment approximation, variations in the magnetic an-
isotropy field on a characteristic microstructural length scale
L can be followed by the magnetization only when lH�L.
At the largest fields, lH is on the order of a few nanometer,
e.g., lH�5 T��2.6 nm for Ni and sharp variations in Mp /Ms
on a scale on the order of lH can be resolved. This can be
clearly seen, for instance, in Fig. 3�b�, where the perturbing
effect of the magnetically hard shell �located at R1�r�R2�
is only seen at the largest field values, and it gives rise to a
peak feature which is washed out at the lower fields. A simi-
lar behavior is also found when the particle’s anisotropy field
increases linearly from the origin to the interface �compare
Fig. 2�a��.

Note that the validity of the present approach is restricted
to large applied fields in order to guarantee that Mp /Ms�1.
For the core-shell particle with hard interfaces, inspection of
Figs. 3�b� and 4 suggests that �for the assumed parameter
values� this small-misalignment criterion is fulfilled for fields
larger than a few tesla; for the other models, much smaller
fields are required in order to satisfy Mp /Ms�1.

The effect of the angle 
 between Hp1 and Hp2 on the
magnetization distribution of the hard core-shell particle is
seen in Fig. 4. As expected, for a fixed external field, the
transversal magnetization decreases at the smallest distances
when 
 is increased from 0° �parallel orientation� to 180°
�antiparallel orientation�. Variations in 
 also affect the cor-
responding correlation functions and spin-misalignment
lengths �not shown�. However, the results for the C�r� and
lC�Hi� are qualitatively very similar and the quantitative dif-
ferences are relatively small, for instance, lC at 10 T de-
creases only by about 3 nm when 
 varies between 
=0°
and 
=180°. Therefore, we consider in the following only
the case that Hp1 is parallel to Hp2 �
=0°�.

In agreement with the Mp /Ms curves, the corresponding
correlation functions shown in Fig. 5 are strongly field de-
pendent and reveal the long-range nature of the spin-
misalignment fluctuations. Despite the existing differences in
the underlying functional dependencies of Hp�x� and the as-
sociated Mp /Ms data �compare Fig. 3�, the shapes of the
different C�r� in Fig. 5 appear to be closely similar: for the
anisotropy-field microstructures investigated in this study,
C�r� at a given field takes on the maximum value at r=0
with �dC /dr�r→0=0 and then decays toward C=0 for r→	.
Clearly, the correlations do neither decay exponentially nor
according to the Ornstein-Zernike formula.

The field dependencies of the corresponding mean-square
magnetization fluctuations are displayed in Fig. 6. Except for
the core-shell model, the C�0� curves are very similar. For
the power-law decay case, the following closed-form expres-
sion for C�0� could be derived from Eqs. �6�, �10�, and �21�
�solid line in Fig. 6�:

C�r = 0,Hi� =
3Hp1

2

2R1Hi
2exp�− R1/lH���2R1 + 6lH�� +��R1 − 6lH�

�cosh�R1/lH� + �3R1 − 3lH�sinh�R1/lH�� . �23�

Equation �23� describes the approach-to-saturation behavior

FIG. 2. �Color online� �a� Magnetization profiles
Mp

Ms
�r� and �b�

correlation functions C�r� of the spin misalignment for the case that
the particle’s anisotropy field increases linearly, Hp�r�=Hp1�r /R1�
with �0Hp1=0.1 T and R1=10 nm. Values of the applied magnetic
field are indicated in the insets and increase from top to bottom,
respectively. Solid lines: no magnetostatic field. Dashed lines: with
magnetostatic field. �c� Field dependence of lC �log-log scale� ob-
tained by ignoring Hd �solid line� and by taking into account Hd

���; lC was determined by means of Eq. �15�.
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�compare Eq. �12��. Closed-form expressions for C�0� can
also be found for the uniform-sphere model and the uniform
core-shell model, and for the case of a linear increase in
Hp�x�. However, these expressions are rather lengthy and we
prefer not to display them explicitly.

Closer inspection of the data in Fig. 5�b� reveals, how-
ever, that the C�r� of the uniform core-shell model with hard
interfaces change their curvature twice while the other cor-
relation functions, which contain the single microstructural
length scale R1, change their curvature only once. This ob-
servation is depicted in Fig. 7, where we show the correla-
tion functions along with their derivatives dC�r� /dr for the
uniform-sphere model at 0.7 T and for the uniform core-shell
model at 10.0 T. We suggest that the origin of the two
minima in the dC /dr data of the core-shell model at large
fields is related to the presence of two types of “defects” in
the microstructure: the first defect of strength Hp1 is repre-
sented by the anisotropy field of the core of the particle while
the second defect is identified with the hard shell �Hp1 /Hp2
=0.1�. At large applied fields, the correlation functions of the
uniform core-shell model reveal a relatively steep decrease at
small distances, which is followed by a slower decrease at
the larger r �compare Figs. 7 and 10�b� below�. This behavior

FIG. 3. �Color online� Reduced transversal magnetization component Mp /Ms as a function of the distance r from the center of the
inclusion. Values of the applied magnetic field are indicated in the insets and increase from top to bottom, respectively. �a� uniform-sphere
model �R1=10 nm, �0Hp1=0.1 T�. �b� Uniform core-shell model with hard interfaces �R1=10 nm, R2=13 nm, Hp1 /Hp2=0.1, and 
=0°�.
�c� Exponential decay. �d� Power-law decay.

FIG. 4. �Color online� Mp /Ms for the uniform core-shell model
with hard interfaces at an applied magnetic field of �0Hi=3.0 T
and for different angles 
 between Hp1 and Hp2 �R1=10 nm, R2

=13 nm, and Hp1 /Hp2=0.1�. Values of 
 are given in the inset and
increase from top to bottom.
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can be understood by inspection of the corresponding mag-
netization profiles �Figs. 3�b� and 4� and by the definition of
the correlation function, Eq. �9�.

We have attempted to “exploit” the above circumstance
for determining field-dependent correlation lengths of the
spin misalignment by identifying the lC’s with the r values at
which the respective dC /dr exhibits minima. It turned out
that this procedure leads to difficulties in locating the exact
positions of the minima in dC /dr, in particular, for the sec-
ond minimum at the larger distances, since this feature be-
comes progressively less pronounced at the smaller values of
the applied field �compare, e.g., the minimum in dC /dr at
r�21.5 nm in Fig. 7�. Therefore, we have employed the
definition Eq. �15� for determining a single characteristic
correlation length from the correlation functions shown in
Fig. 5.

C. Correlation length of the spin misalignment

The results for the field dependence of lC for the different
models for Hp�x� can be seen in Fig. 8. Surprisingly, we find
that the simple function

lC�Hi� = L + lH�Hi� �24�

with L=R1=10 nm �solid line in Fig. 8�a�� provides a very
good description of the lC data for practically all the consid-

FIG. 5. �Color online� Results for the field dependence of the correlation function C�r� of the spin misalignment. Values of the applied
magnetic field are indicated in the insets and increase from top to bottom, respectively. �a� Uniform-sphere model �R1=10 nm and
�0Hp1=0.1 T�. �b� Uniform core-shell model with hard interfaces �R1=10 nm, R2=13 nm, Hp1 /Hp2=0.1, and 
=0°�. �c� Exponential
decay. �d� Power-law decay.

FIG. 6. �Color online� Field dependence of the mean-square
magnetization fluctuation C�r=0,Hi� �log-log scale�. Solid line:
Eq. �23�.
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ered functional dependencies of the anisotropy field, except
the core-shell model �see Fig. 8�b��, which exhibits a more
complicated behavior lC�Hi�. The choice lC�Hi�=L+ lH�Hi� is
motivated by the above-mentioned convolution property
�compare discussion in Sec. IV�, where the quantity L is on
the order of the defect size. Likewise, the function lC

=	L2+ lH
2 with L=R1 �dashed line in Fig. 8�a�� also reason-

ably reproduces the field dependence of lC. As expected, the
core-shell model with soft interfaces �Hp1 /Hp2=10� exhibits
an almost identical field dependence lC�Hi� as the uniform-
sphere model or as the cases of exponential or power-law

decay. Quite uniquely and irrespective of the internal struc-
ture of the anisotropy field of the particle, we find a value of
lC which is close to R1 at the largest fields. It is also demon-

FIG. 7. �Color online� Correlation functions C�r� of the spin
misalignment for the uniform-sphere model �R1=10 nm and
�0Hp1=0.1 T� and for the uniform core-shell model with hard in-
terfaces �R1=10 nm, R2=13 nm, Hp1 /Hp2=0.1, and 
=0°�. Inset:
respective derivatives dC /dr.

FIG. 8. �Color online� Results for the field dependence of the
correlation length lC of the spin misalignment �log-log scale�. lC

was determined by means of the definition Eq. �15�. Solid line in
�a�: lC�Hi�=R1+ lH�Hi�. Dashed line in �a�: lC�Hi�=	R1

2+ lH
2 �Hi�.

Dotted line in �a�: lC�Hi�= lH�Hi�. Solid horizontal line in �a�: lC

=R1=10 nm. Solid line in �b�: lC�Hi�=�R+ lH�Hi�. Dotted horizon-
tal lines in �b�: R1=10 nm and R2=13 nm.

FIG. 9. �Color online� lC for the uniform core-shell model as a
function of the ratio Hp1 /Hp2 �log-linear scale� and at different
applied magnetic fields �see inset� �R1=10 nm, R2=13 nm, and

=0°�. lC was determined by means of Eq. �15�.

FIG. 10. �Color online� Normalized correlation functions C�r�
of the spin misalignment for the uniform core-shell model at two
different applied magnetic fields and as a function of the ratio
Hp1 /Hp2 �see insets� �R1=10 nm, R2=13 nm, and 
=0°�. �a�
�0Hi=3.0 T and �b� �0Hi=30.0 T. Solid horizontal lines in �a�
and �b�: C�r�=exp�−1�.
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strated in Fig. 8�a� that exponentially decaying magnetiza-
tion fluctuations, which result in lC= lH �dotted line�, are not
in accordance with Eq. �24� already at fields larger than a
few 10 mT.

The field dependence of lC for the uniform core-shell
model with hard interfaces �Fig. 8�b�� is significantly differ-
ent from the lC�Hi� of all the other models for Hp�x� �Fig.
8�a�� and cannot be described by the simple relation Eq. �24�.
At the largest fields, it can be seen that lC exhibits a tendency
to evolve on a length scale which is significantly smaller
than the radius of the core-shell particle. However, in a field
regime which is realistically achieved in experiment, �0Hi
�10 T, lC is quite close to the size of the particle, in quali-
tative agreement with the previous observations in Fig. 8�a�.

This can also be seen in Figs. 9 and 10, where we plot,
respectively, lC and C�r� for the uniform core-shell model at
fixed applied magnetic fields and as a function of the ratio
Hp1 /Hp2. At the smaller applied fields, here, a few tesla, the
largest lC values are obtained in the hard interface region
�Hp1 /Hp2�1� and then lC smoothly decreases with increas-
ing ratio Hp1 /Hp2. By contrast, for applied fields on the order
of a few 10 T, the spin-misalignment lengths exhibit a ten-
dency to decrease at the smallest Hp1 /Hp2 values, and the lC
take on a maximum at some intermediate value of Hp1 /Hp2.
This scenario is further illustrated in Fig. 10, where the re-
spective point of intersection of the �normalized� correlation
function with the horizontal line marks the corresponding
value of lC.

VII. CONCLUSIONS AND OUTLOOK

Using linearized micromagnetic theory, we have numeri-
cally computed the autocorrelation function C�r� of the spin
misalignment for a model system which consists of an iso-
lated spherical nanoparticle �core-shell particle� that is em-
bedded in an anisotropy-field-free matrix. This approach is
expected to be representative for a magnetic microstructure
which is characterized by an ensemble of statistically uncor-
related defects �random anisotropy�. For different spatial pro-
files of the particle’s anisotropy field �uniform sphere, uni-
form core shell, linear increase, and exponential and power-
law decay�, we have evaluated the magnetization response
and from the field-dependent C�r� data the associated char-
acteristic decay length lC of the perturbation in the spin
structure. In contrast to the common assumption, the spin-
misalignment correlations do not decay exponentially but ex-
hibit a more complicated functional dependency C�r�. Like-
wise, in reciprocal space, the associated spin-misalignment
scattering does not follow an asymptotic q−4 �Porod-type�

behavior. Equation �15� has been proven to represent a rea-
sonable definition for extracting lC from the correlation func-
tion. Except for the core-shell model with hard interfaces, we
find that the rather simple expression lC�Hi�=L+ lH�Hi�,
where L is a measure for the defect size �particle size�, pro-
vides a very robust description for the field dependence of lC.
Within limits, this relation appears to be independent of the
detailed internal structure of the anisotropy field, and the
findings provide additional justification for the use of Eq.
�24� in Ref. 54 for the successful description of field-
dependent correlations in nanocrystalline Co and Ni.

Improvements to the present model calculation may be
achieved by combining experimental SANS data with the
results of full-scale 3D micromagnetic simulations; first re-
sults in this direction are reported in Ref. 61. The present
approach is restricted to the high-field limit and relies on
uniform values for the exchange-stiffness constant A and
saturation magnetization Ms. We have considered the re-
sponse of the magnetization to a single, radially symmetric
defect, Hp=Hp�r�, which is assumed to vanish outside the
defect zone. In real specimens, however, the defect symme-
try might be more complex and the materials parameters may
change at phase boundaries and interfaces and, therefore,
boundary conditions should be taken into account.27 In addi-
tion to the random anisotropy of the individual defects, there
may be a macroscopic magnetic anisotropy superposed. Fur-
thermore, a distribution of defect sizes may result in a
smoothing of the spin-misalignment correlations. The use of
numerical micromagnetics allows one to solve some of these
problems, and it would become possible to take into account
the full nonlinearity of Brown’s equations.

From an experimental point of view, it is worth to men-
tion that due to the recently opened up possibility to perform
routinely longitudinal neutron-polarization analysis in a
SANS experiment,62,63 spin-misalignment scattering can be
directly measured in the two spin-flip channels.64 Such ex-
periments not only eliminate the unwanted nuclear back-
ground signal but permit the determination of partial corre-
lation functions.65
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